FAH mentioned in Chemical and Engineering News article
Posted: Fri Nov 05, 2010 4:13 pm
"Three years can pass in a flash for most chemical research projects—and often without yielding three years' worth of useful data. Experiments take time: Techniques need to be carefully developed, conditions tweaked, problems overcome, and promising results verified. Patient chemists involved in the 10- to 15-year drug discovery process can attest to this.
...
Computational chemists took note of these graphics cards nearly a decade ago because of their ability to carry out billions of math operations per second, but harnessing their power was tedious and difficult. "In those early days, you really had to represent your calculation as if it were some graphics operation," says Vijay S. Pande, a chemistry professor at Stanford University. In other words, theorists had to jump through a lot of hoops to get the GPUs, which were set up to output shaded polygons, to recognize their algorithms.
...
Pande is now using the graphics cards in his Folding@home system, a distributed-computing project that links personal computers around the world to a main server and borrows their power to do molecular dynamics calculations. Folding@home, which celebrated its 10th anniversary last month, currently comprises roughly 300,000 to 400,000 machines, about 40,000 of which have GPUs accessible for scientific simulations.
..."
http://pubs.acs.org/cen/science/88/8844sci1.html
...
Computational chemists took note of these graphics cards nearly a decade ago because of their ability to carry out billions of math operations per second, but harnessing their power was tedious and difficult. "In those early days, you really had to represent your calculation as if it were some graphics operation," says Vijay S. Pande, a chemistry professor at Stanford University. In other words, theorists had to jump through a lot of hoops to get the GPUs, which were set up to output shaded polygons, to recognize their algorithms.
...
Pande is now using the graphics cards in his Folding@home system, a distributed-computing project that links personal computers around the world to a main server and borrows their power to do molecular dynamics calculations. Folding@home, which celebrated its 10th anniversary last month, currently comprises roughly 300,000 to 400,000 machines, about 40,000 of which have GPUs accessible for scientific simulations.
..."
http://pubs.acs.org/cen/science/88/8844sci1.html