Re: Testing domain decomposition for high CPU counts
Posted: Fri Apr 24, 2020 1:58 am
Data for a slightly different 6x6x5 project. This one will not run on 85 threads.
p16420 - max 6x6x5 - PME load 0.18
All data for 1-128 threads. 1 indicates success while blank is failure.
p16420 - max 6x6x5 - PME load 0.18
Code: Select all
2 = 2x1x1
3 = 3x1x1
4 = 4x1x1
5 = 5x1x1
6 = 6x1x1
8 = 4x2x1
9 = 3x3x1
10 = 5x2x1
12 = 4x3x1
15 = 5x3x1
16 = 4x4x1
18 = 6x3x1
20 = 4x4x1 16 + 4 PME
21 = 4x4x1 16 + 5 PME
24 = 6x3x1 18 + 6 PME
25 = 5x4x1 20 + 5 PME
27 = 6x3x1 18 + 9 PME
28 = 5x4x1 20 + 8 PME
30 = 6x4x1 24 + 6 PME
32 = 6x4x1 24 + 8 PME
35 = 5x5x1 25 + 10 PME
36 = 3x3x3 27 + 9 PME
40 = 4x4x2 32 + 8 PME
42 = 4x4x2 32 + 10 PME
44 = 6x3x2 36 + 8 PME
45 = 6x3x2 36 + 9 PME
48 = 4x3x3 36 + 12 PME
50 = 5x4x2 40 + 10 PME
52 = 5x4x2 40 + 12 PME
54 = 6x3x2 36 + 18 PME
55 = 5x3x3 45 + 10 PME
56 = 2x4x5 40 + 16 PME
60 = 4x3x4 48 + 12 PME
64 = 4x4x3 48 + 16 PME
65 = 2x5x5 50 + 15 PME
66 = 6x3x3 54 + 12 PME
72 = 6x3x3 54 + 18 PME
75 = 5x3x4 60 + 15 PME
78 = 4x4x4 64 + 14 PME
80 = 4x4x4 64 + 16 PME
81 = 3x6x3 54 + 27 PME
88 = 4x6x3 72 + 16 PME
90 = 6x3x4 72 + 18 PME
95 = 5x5x3 75 + 20 PME
96 = 6x4x3 72 + 24 PME
98 = 4x5x4 80 + 18 PME
100 = 5x4x4 80 + 20 PME
110 = 5x6x3 90 + 20 PME
114 = 6x5x3 90 + 24 PME
115 = 5x6x3 90 + 25 PME
117 = 6x4x4 96 + 21 PME
120 = 6x4x4 96 + 24 PME
125 = 5x5x4 100 + 25 PME
128 = 4x6x4 96 + 32 PME
Code: Select all
# Threads p14336 p16802 p14365 p16501 p14542 p13832 p16420 p14378 p13851 p16422 p16423 p14574 p14576
Box 18x18x18 16x16x16 13x13x13 11x11x10 6x6x5 6x6x5 6x6x5 5x5x5 5x5x4 5x5x4 4x4x4 4x4x3 4x4x3
PME 0.22 0.09 0.36 0.1 0.2 0.19 0.18 0.37 0.19 0.18 0.19 0.18 0.17
1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1 1
7 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1 1 1 1
11 1 1 1 1
12 1 1 1 1 1 1 1 1 1 1 1 1 1
13
14
15 1 1 1 1 1 1 1 1 1 1
16 1 1 1 1 1 1 1 1 1 1 1 1 1
17
18 1 1 1 1 1 1 1 1 1 1 1 1 1
19
20 1 1 1 1 1 1 1 1 1 1 1 1 1
21 1 1 1 1 1 1 1 1 1 1 1 1 1
22
23
24 1 1 1 1 1 1 1 1 1 1 1 1
25 1 1 1 1 1 1 1 1 1 1
26
27 1 1 1 1 1 1 1 1 1 1 1 1 1
28 1 1 1 1 1 1 1 1 1 1
29
30 1 1 1 1 1 1 1 1 1 1 1 1
31
32 1 1 1 1 1 1 1 1 1 1 1 1 1
33
34
35 1 1 1 1 1 1 1 1 1 1
36 1 1 1 1 1 1 1 1 1 1 1 1
37
38
39
40 1 1 1 1 1 1 1 1 1 1 1 1 1
41
42 1 1 1 1 1 1 1 1 1 1 1 1 1
43
44 1 1 1 1 1 1 1 1 1 1 1 1 1
45 1 1 1 1 1 1 1 1 1 1 1 1 1
46
47
48 1 1 1 1 1 1 1 1 1 1 1 1
49
50 1 1 1 1 1 1 1 1 1 1
51
52 1 1 1 1 1 1 1 1 1 1
53
54 1 1 1 1 1 1 1 1 1 1 1 1
55 1 1 1 1 1 1 1 1 1 1
56 1 1 1 1 1 1 1 1 1 1
57
58
59
60 1 1 1 1 1 1 1 1 1 1 1 1
61
62
63 1 1 1 1 1
64 1 1 1 1 1 1 1 1 1 1 1 1 1
65 1 1 1 1 1 1 1 1 1 1
66 1 1 1 1 1 1 1 1
67
68
69
70 1 1 1 1 1
71
72 1 1 1 1 1 1 1 1
73
74
75 1 1 1 1 1 1 1 1 1 1
76
77 1 1 1 1
78 1 1 1 1 1 1 1 1
79
80 1 1 1 1 1 1 1 1 1 1 1
81 1 1 1 1 1 1 1 1
82
83
84 1 1 1 1
85 1 1 1 1 1 1 1 1
86
87
88 1 1 1 1 1 1
89
90 1 1 1 1 1 1 1
91 1 1 1 1
92
93
94
95 1 1 1 1 1 1 1 1 1 1
96 1 1 1 1 1 1 1 1
97
98 1 1 1 1 1 1 1 1
99 1 1 1 1 1
100 1 1 1 1 1 1 1 1 1 1
101
102 1 1 1 1
103
104 1 1 1 1 1
105 1 1 1 1
106
107
108 1 1 1 1 1
109
110 1 1 1 1 1 1 1
111
112 1 1 1 1
113
114 1 1 1 1 1 1 1
115 1 1 1 1 1 1 1
116
117 1 1 1 1 1 1 1 1
118
119 1 1 1 1
120 1 1 1 1 1 1 1 1
121
122
123
124
125 1 1 1 1 1 1 1 1 1 1
126 1 1 1 1
127
128 1 1 1 1 1 1 1 1